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We show that inclusion of the competition between quasiparticle and local-moment behavior in
CrO2 is necessary to obtain good agreement between the calculated and experimentally observed spin
polarization. By going beyond a single Slater determinant description, we find a spin polarization
of close to 100% near the Fermi level reflecting quasi-particle behavior. At energies higher than
0.1-0.2 eV above the Fermi level, the local moment character dominates and the spin polarization
is reduced to approximately 50%.

PACS numbers: PACS numbers: 71.10.-w,75.10.Lp,75.50.Ss

The ever-increasing demands on electronics require a
further shrinking of the feature sizes that has pushed the
silicon technology to its limits. A promising candidate
for a new device technology is spin electronics or spin-
tronics, where the spin adds a degree of freedom to the
conventional charge-based semiconductor technology[1].
An important concept in spintronics is the degree of spin
polarization. As pointed out by Mazin[2], the definition
of spin polarization depends strongly on the experiments
under consideration. However, the most natural defini-
tion is (ρ↑−ρ↓)/(ρ↑ +ρ↓); i.e. the difference between the
spin-up and spin-down density of states normalized to
the total density of states. This spin polarization is mea-
sured in spin-resolved (inverse) photoemission. Other ex-
periments, such as transport measurements or Andreev
reflection, probe a different degree of spin polarization[2].
In order for the spin current to pass through many differ-
ent materials and interfaces while retaining a high signal-
to-noise ratio, a high degree of spin polarization is essen-
tial. For example, for compatibility with conventional
semiconductors, a spin polarization of close to 100% is
necessary if the conductivity of the ferromagnet is to be
much larger than that of the semiconductor[3]. Obvi-
ously, this makes a fundamental theoretical understand-
ing of this concept essential.

A compound where a spin polarization close to 100% is
expected[4] is CrO2, well known from its use in magnetic
recording tapes. The electronic structure of CrO2 has
been studied extensively using theoretical models that
incorporate the effects of electron-electron interactions
in various ways[4–7]. In CrO2, Chromium is formally in
a tetravalent (4+) state and has two electrons in the t2g

orbitals. CrO2 is also metallic, although close to a metal-
insulator transition [6]. In the rutile structure, the CrO6

octahedra are essentially arranged in ribbons, splitting
the t2g states into two distinct bands. The band con-
sisting of xy orbitals is full. The other two t2g orbitals
form a half-filled band crossing the Fermi level. The den-
sity of states in CrO2 has been calculated using various
methods: LDA[4, 5], LDA+U [6], and LDA plus dynam-
ical mean field[7]. The results of these calculations are
shown in the lower half of Fig. 1. The major differ-

ences focus on a number of points. First, the position
of the xy band gives rise to the sharp peak below the
Fermi level around 0.5 eV in the LDA calculation[4, 5].
In the LDA+U calculation[6], these states are pushed to
lower energy as a result of electron-electron interactions.
The other significant difference is the position of the spin-
down band. In a conventional LDA calculation, the spin-
down band begins at 0.5 eV above the Fermi level. In-
clusion of electron-electron interactions in a Hartree-Fock
fashion in LDA+U pushes the spin-down band approxi-
mately 1.5 eV higher in energy, see Fig. 1(a). In LDA
plus dynamical mean field (which uses the LDA+U cal-
culation as a starting point)[7], Coulomb interactions are
treated in a more advanced way by inclusion of dynam-
ical many-body effects. This leads to the appearance of
incoherent spectral weight (Hubbard-like bands) in the
spin-up density of states, see Fig. 1(b). Note that these
calculations include only t2g orbitals. These incoherent
states “compress” the quasiparticle bands, and in fact,
the spin-up density of states near the Fermi level resem-
bles more closely the LDA calculation than the LDA+U
calculation. Also the spin-down density of states is closer
to the Fermi level with respect to LDA+U as a result of
a Hartree shift[7]. In addition, the dynamical mean-field
calculation causes a broadening of the spectral features.

Of interest to our discussion is the spin polarization
seen in the upper half of Fig. 1. In fact, the quali-
tive behavior is very similar for the different calculations
described above. Since the ground state is fully polar-
ized only spin-up electrons can be removed and the spin
polarization is 100% below the Fermi level. Above the
Fermi level, the spin polarization is 100% up to the onset
of the spin-down density of states, when the spin polar-
ization becomes negative. The energy where this sign
change occurs depends on the different incorporations of
the many-body effects.

On the electron-removal side, these calculations should
be compared with spin-resolved photoemission. Al-
though no high-resolution experiments close to the Fermi
level are available, at 2 eV below the Fermi level the
spin polarization is still close to 100% [8]. This con-
firms our expectation of a fully polarized ground state.
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FIG. 1: The lower half shows different calculations of the
spin-polarized CrO2 density of states: LDA[2] (dotted line in
(a)), LDA+U [6] (solid line in (a)), LDA plus dynamical mean
field[7] (thick solid line in (b)), and a configuration interac-
tion calculation (c). The upper half shows the corresponding
spin polarizations for the LDA-based densities of states. For
comparison the spin polarization obtained with spin-resolved
photoemission[8] (triangles) and spin-resolved oxygen 1s x-
ray absorption[9] (diamonds) are shown.

The spin polarization above the Fermi level has recently
been determined using spin-resolved oxygen 1s x-ray
absorption[9]. By using the spin conservation of the oxy-
gen KLL Auger decay channel, the spin polarized O 2p
projected density of states can be obtained. The oxygen
2p spin polarization reflects well the chromium 3d spin
polarization within the first 2 eV above the Fermi level.
The measured spin polarization looks very different from
the LDA-based calculations. Close to the Fermi level, the
measured spin polarization is almost 100%. However, it
then slowly decreases and changes sign around 1.5 eV. In
fact, apart from the high spin polarization close to the
Fermi level, this behavior resembles more a local-moment
behavior. For comparison, we have performed a configu-
ration interaction calculation for a CrO6 cluster (includ-
ing configurations 3dn+mLm with n = 2, 1, 3 for ground
state and electron-removal and addition final states, re-
spectively; m = 0, . . . , 3, where L stands for a hole on the
oxygens surrounding the chromium), see Fig. 1(c). The
calculation includes the full dd multiplet interaction and
3d spin-orbit coupling[10]. For the calculation, we use a

charge-transfer energy of 4 eV and a local Coulomb inter-
action expressed in Racah parameters A = 4, B = 0.11
and C = 0.43 eV [10]. Note that the effective gap ob-
tained for these parameters, Ueff = Aeff + B = 2 eV is
significantly smaller than the bare Coulomb interaction
of 4 eV as a result of the strong mixing of the Cr 3d
states and the surrounding oxygens. Obviously, this cal-
culation offers a poor description of the electronic struc-
ture of CrO2 predicting it to be an insulator. However,
some important points can be noted. Again, below the
Fermi level, the spin polarization is 100%. For addition
of a spin-down t2g electron, the probability of reaching
the doublet state (S = 1

2
) is three times that of the

the quartet state (S = 3/2) [10]. The spin polarization
within a configuration interaction approach is therefore
(1 − 1

3
)/(1 + 1

3
) = 50%, which is much closer to the ex-

perimentally observed value. This leads to the important
conclusion that the electronic structure in CrO2 within
1 eV above the Fermi level has a dualistic character[9]:
quasiparticle-like behavior with a spin polarization close
to 100% close to the Fermi level and local-moment char-
acter with a spin polarization close to 50% at higher en-
ergies above the Fermi level. In this Letter, we show that
a better description of the spin polarization can be ob-
tained by taking into account the competition between
quasiparticle and local moment character.

In CrO2, the t2g states split into an xy band which
is full and two nearly degenerate states τa = yz ± zx[6]
with a = 0, 1 that form a half-filled band that crosses the
Fermi level. Within an ionic picture, the local moments
are given by |di,xy↑diτa↑(

3E)〉, where dimσ corresponds
to an electron in a 3d orbital with orbital index m and
spin component σ on site i. The symmetry Γ0 =3 E is
given for the local D4h group[10]. Although this state
minimizes the local Hamiltonian H0 + HU consisting of
on-site energies and the full-multiplet Coulomb interac-
tion, restriction to purely local states obviously does not
minimize the kinetic energy,

T =
∑

im,jm′σ

t(im, jm′)d†jm′σdimσ + H.c. (1)

In order to find local states that provide a better balance
between the kinetic energy and the on-site Coulomb in-
teraction, let us consider the effect of the kinetic energy
on a particular site. We consider the coupling of the lo-
cal moment to its surroundings. For the ground state,
we can restrict ourselves to the dτa↑ states, since LDA
shows that all other 3d orbitals are either full or empty.
For a particular site, coupling to a bath of states can be
expressed as a local field

Tlocal =
∑

a

teff

{

d†µdτa↑ + d†τa↑
dµ

}

, (2)

where site indices have been omitted and d†
µ creates an

electron in the bath with an energy equal to the chemical
potential. In the case that the coupling is entirely deter-
mined by the coupling strength teff , Tlocal corresponds
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FIG. 2: The density of states for CrO2: (a) the total density of
states; (b) the τa-projected density of states (solid and dotted
line); (c)the eg (solid line) and the xy (dotted line) projected
density of states.

to a scalar field which induces particles on and off the
site. This leads to an effective coupling between states
with different numbers of particles at a particular site.
The effective coupling parameter will be determined from
minimization of the free energy. For the ground state, the
effective local states are

|(xy ↑, τa ↑)eff〉 = cos θ|dxy↑dτa↑(
3E)〉 + (3)

(−1)a sin θ√
2

{

|dxy↑(
2B2g)〉 + (−1)a|dxy↑dτ0↑dτ1↑(

4B1)〉
}

,

where a = 0, 1; electrons and holes in the bath have been
omitted from the notation. The ionic states |dn(Γ)〉 have
now been replaced by effective local states |α〉 which di-
agonalize H0 + HU + Tlocal. In addition to the two effec-
tive local-moment states |(xy ↑, τa ↑)eff〉, there are also
their electron-removal (|(xy ↑)eff〉) and electron-addition
(|(xy ↑, τ0 ↑, τ1 ↑)eff〉) counterparts.

The dispersion of these effective local states can be
obtained from the Green’s function

Gjm′σ
imσ (t) = −i〈g|{djm′σ′(t), d†imσ(0)}|g〉, (4)

where |g〉 is the ground state consisting of effective local
states |τa〉. The Fourier transform of the Green’s function
is split into an electron-removal and an electron-addition
part

Gjα′

iα (ω) =
∑

aa′mm′σσ′

(5)

{

〈jτa′ |d†jm′σ |jα′〉〈jα′| 1

z − H
|iα〉〈iα|dimσ |iτa〉

+ 〈jτa′ |djm′σ |jα′〉〈jα′| 1

z + H
|iα〉〈iα|d†imσ |iτa〉

}

,

where z = ω + i0+ The Green’s function describes the
dispersion of an excited local state in a background of
|iτa〉 states, where |iτa〉 is shorthand for |i(xy, τa)eff〉.
Note that in the Green’s function, we have to include
all possible configurations |α〉 that can be reached from
the ground state. When we restrict ourselves to the co-
herent motion of the excited local states, we can solve
the total Green’s function by going to k space:

Gkmσ =
∑

αα′

Gα′

kmσ,α =
1

(G0
mσ)−1 − εkmσ

, (6)

where the band energies are taken from the spin-polarized
independent-particle density of states[5]. We have as-
sumed here that cross terms between 3d states of different
symmetry, i.e. m = xy, τ, eg, and between spin-up and
spin-down bands are small and will be neglected. The
local Green’s function is given by

G0
mσ =

1

2

∑

aα

|〈α|d†mσ |τa〉|2
z − E(α)

, (7)

where the local energies are given by E(α) = 〈α|H0 +
HU |α〉.

Quasiparticle behavior is found only for the τa ↑ states
(τ0,1 = yz ± zx). The τa ↑ states form a Hubbard-like
system, where the orbital index a = 0, 1 replaces the spin
σ =↑, ↓. The local Green’s function is given by

G0
τ↑ =

q

z
+

1 − q

2

[

1

z − 1

2
Uτ↑ cos 2θ

+
1

z + 1

2
Uτ↑ cos 2θ

]

,(8)

where Uτ↑ = Aeff + B = 2 eV. The renormalized quasi-

particle bandwidth is given by q = 1

4
sin2 2θ. This

width is equivalent to that obtained with slave-boson
methods[11]. In addition, the method described here also
provides information on the incoherent spectral weights
described by the terms preceded by 1

2
(1 − q). For q

close to unity, the spin-up τ density of states is close
to the independent-particle bandwidth. Note that, al-
though q → 1/4 when θ → π/4, the Green’s function
gives the full bandwidth. When q decreases, a renor-
malized quasiparticle band qεkτ↑ is found between the
upper and lower incoherent bands. This is the situa-
tion found for CrO2, which is expected to be close to a
metal-insulator transition[6], see Fig. 2(b). Upon fur-
ther increasing the Coulomb term Uτ↑, the system goes
through a Brinkman-Rice transition[12] and the quasi-
particle peak disappears (q = θ = 0). In this limit, the
model reduces to the Hubbard-I approximation[13]. The
value for q can be found from minimization of the free
energy as in Kotliar and Ruckenstein[11].

Despite the added difficulty of including the dd multi-
plet structure, an intuitive physical picture appears. In
the ground state, all the orbitals, apart from the spin-
up τa states, are either full or empty. When adding an
electron in a τa↑ orbital, it can form a quasiparticle with
the background of τa↑ electrons. Therefore spin-up den-
sity of states is found at the Fermi level, see Fig. 3(b).
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FIG. 3: (a) The spin polarization with (solid) and without
(dotted) the inclusion of the Sz = 1/2 component of the quar-
tet states.; (b) The density of states in the region of the Fermi
level broadened with a Lorentzian with a width of 0.25 eV.

For addition of a τ ↓ electron, we can distinguish sev-
eral situations. The local moment has two components:
|di,xy↑diτa↑〉, where a = 0, 1. Adding a τa′ electron to
this state always results in a doublet state when a′ = a,
see the dotted line in Fig. 2(b). For a′ 6= a, the chances
of reaching a quartet and a doublet state are 1

3
and 2

3
,

respectively; see the solid line in Fig. 2(b). It is im-
portant to note that, although the same quartet states
|dxy↑dτ0↑dτ1↑(

4B1)〉 are involved, the spin-up and spin-
down τ density of states are essentially different. Due
to the on-site interactions, the spin-down τ electron does
not form a quasiparticle with the background of spin-up
electrons and therefore feels the full Coulomb repulsion.
Hence, only incoherent spectral weight is observed. In
addition, the hopping of the spin-up τ electron in the
positive background is hindered by the ferromagnetic
double-exchange mechanism[14, 15]. The reduction of
the bandwidth by a factor of three is essential to pre-
vent the spin-down band from crossing the Fermi level

(Obviously, this would lead to a contradiction with our
assumption that the ground state is fully polarized). For
all the other states, no quasiparticle states can be formed
since the electrons feel the full Coulomb interaction for
that particular multiplet. For example, the xy ↑ electron-
removal states are pushed to higher binding energies, see
Fig. 2(c). The xy ↓ electron-addition states are also
pushed to higher energies above the Fermi level and split
since two different doublet states can be formed with the
background of |di,xy↑diτa↑〉 local moments.

The resulting spin polarization is shown in Fig.
3(a). For a better comparison with experiment a small
Lorentzian broadening of 0.25 eV has been added. Below
the Fermi level, a spin polarization close to 100% is found.
Up to 0.1-0.2 eV above the Fermi level, the quasiparticle
character dominates and the spin polarization is close to
100%. At higher energies above the Fermi level, the local
moment character becomes important and the spin po-
larization decreases to approximately 50%. It then slowly
decreases up to 1 eV, when it changes sign as a result of
the spin-down eg density of states. From the comparison
with and without the inclusion of the Sz = 1/2 compo-
nent of the quartet state, it is obvious that restriction to
a single Slater determinant leads to a poor description
of the spin polarization close to the Fermi level, see Fig.
3(a).

In conclusion, we have demonstrated the importance
of including the competition between quasiparticle and
local-moment behavior in the description of the spin po-
larization of CrO2. Although the discussion has been re-
stricted to CrO2, it is obvious that comparable behavior
can be expected for other transition-metal compounds,
such as the manganese perovskites showing colossal mag-
neto resistance and even in much more delocalized sys-
tems such as Ni metal[16].
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